Abstract

Background. The problem of choice of filling material in cervical caries treatment of patients with inflammatory periodontal diseases is considered in the article. It was evaluated the adaptation of filling materials to tooth tissues, as a result of mechanical some aggressive methods applied for treatment of periodontal tissues with curettes using ultrasonic apparatus. The following filling materials were suggested: composite light-curing filling material, hybrid composite light-cured material, and hybrid glass ionomer material with triple curing.
 Objectives. The aim of the work is to give arguments for the choice of filling material for cervical caries treatment of patients with inflammatory diseases of the periodontium during the treatment with the use of gingival curettage.
 Materials and methods. Carious cavities were artificially prepared on the teeth removed for surgical indications in the cervical areas and, according to the manufacturer's instructions, filled with: light-curing composite filling material, hybrid light-curing composite, hybrid glass-ionomer triple-curing cement and immersed for maturation at 37 °C into isotonic solution for 5 days. After that, there was removal of dental deposits and gum curettage carried out according to the Protocol developed by Moscow state medical and dental University under the name of A. I. Evdokimov, the Ministry of Healthcare, Russian Federation. The fillings were isolated with1 mm indentation from the edge of the insulating coating. All available cavities and apical holes of the roots are filled with wax. Then the teeth were placed in the eosin-B solution for 2 hours at a temperature of 37 °C. On the longitudinal saws in the center of the filling, a visual assessment of the edge permeability of the filling material was carried out using a Khera S .C., Chan K.C. five-point system.
 Results. The best results were obtained by light-curing composite filling material. So, it did not reveal the edge permeability of the filling material in 26 % of case and did not reveal any case of staining in the bottom of cavity. Also, in the composite of light curing, no staining of the bottom of artificial cavity was revealed. However, only 9 % of the samples had no permeability. In hybrid glass ionomer triple-cured cement, the greatest penetration of colorant beyond the edges of the artificial cavity was observed and amounted to 87 % of cases. Staining at the bottom of the artificial cavity was revealed in 13 % of cases. 
 Summary. The carried out studies on experimental models have shown that after the gingival curettage the lowest indices of edge permeability and better adaptive properties has composedly light-curing material. It proved the best resistance to traumatic and aggressive factors. It is optimal to use a light-cured composite filling material to cure patients with inflammatory periodontal diseases in the cervical areas, with mandatory compliance in the stages of preparation, filling and polishing.

Highlights

  • The problem of choice of filling material in cervical caries treatment of patients with inflammatory periodontal diseases is considered in the article

  • The carried out studies on experimental models have shown that after the gingival curettage the lowest indices of edge permeability and better adaptive properties has composedly light-curing material

  • В Международной классификации стоматологических заболеваний (ICD-DA, WHO 1995) пародонтит рассматривается в разделе К05 ― Гингивит и болезни пародонта [12]

Read more

Summary

Introduction

The problem of choice of filling material in cervical caries treatment of patients with inflammatory periodontal diseases is considered in the article. It was evaluated the adaptation of filling materials to tooth tissues, as a result of mechanical some aggressive methods applied for treatment of periodontal tissues with curettes using ultrasonic apparatus. The following filling materials were suggested: composite light-curing filling material, hybrid composite light-cured material, and hybrid glass ionomer material with triple curing

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.